Jumat, 20 Desember 2013

SENYAWA KOMPLEKS

NAMA : GUNAWAN
NIM     : F1C111035
PRODI: KIMIA
UNIVERSITAS JAMBI

MAKALAH SENYAWA KOMPLEKS

BAB I
PENDAHULUAN

A.    Latar Belakang
Dalam ilmu kimia, kompleks atau senyawa koordinasi merujuk pada molekul atau entitas yang terbentuk dari penggabungan ligan dan ion logam. Dulunya, sebuah kompleks artinya asosiasi reversibel dari molekulatom, atau ion melalui ikatan kimia yang lemah. Pengertian ini sekarang telah berubah. Beberapa kompleks logam terbentuk secara irreversibel, dan banyak diantara mereka yang memiliki ikatan yang cukup kuat.  

Pengertian Senyawa Kompleks, Ion, Contoh, Logam, Unsur Transisi, Kimia - Warna yang tampak dalam senyawa kimia tidak hanya menarik, tetapi juga memberikan pengetahuan tentang struktur dan ikatan di dalam senyawa. Logam-logam unsur transisi pada umumnya berwarna sehingga banyak digunakan, misalnya untuk pigmen cat atau kaca.
Senyawa kompleks adalah senyawa yang tersusun dari suatu ion logam pusat dengan satu atau lebih ligan yang menyumbangkan pasangan elektron bebasnya kepada ion logam pusat. Donasi pasangan elektron ligan kepada ion logam pusat menghasilkan ikatan kovalen koordinasi sehingga senyawa kompleks juga disebut senyawa koordinasi [1]. Jadi semua senyawa kompleks atau senyawa koordinasi adalah senyawa yang terjadi karena adanya ikatan kovalen koordinasi antara logam transisi dengan satu atau lebih ligan [2]. Senyawa kompleks sangat berhubungan dengan asam dan basa lewis dimana asam lewis adalah senyawa yang dapat bertindak sebagai penerima pasangan bebas sedangkan basa lewis adalah senyawa yang bertindak sebagai penyumbang pasangan elektron [3]. Senyawa kompleks dapat diuraikan menjadi ion kompleks.


Senyawa kompleks telah banyak dipelajari dan diteliti melalui suatu tahapan-tahapan reaksi (mekanisme reaksi) dengan menggunakan ion-ion logam serta ligan yang berbeda-beda. Ligan memiliki kemampuan sebagai donor pasangan elektron sehingga dapat dibedakan atas ligan monodentat, bidentat, tridentat dan polidentat.

Banyak sintesis senyawa kompleks yang telah dilakukan menghasilkan senyawa antara sebagai katalis yang dapat membantu dalam reaksi-reaksi kimia. Salah satu senyawa yang dapat digunakan dalam sintesis kompleks adalah ligan yang berasal dari basa Schiff, dimana senyawa kompleks yang terbebtuk merupakan salah satu senyawa antara yang dapat digunakan untuk bermacam penerapan ilmu, seperti dalam ilmu biologi, klinik dan analitik. Kerja dan aktivitas obat menunjukkan kenaikan setelah dijadikan logam-logam transisi terkhelat yang ternyata lebih baik daripada hanya menggunakan senyawa organik.

Dalam beberapa hal kompleks tidak memberikan reaksi dalam larutan karakteristik ion logam atau ligan tidak kompleks tetapi stabilitas termodinamik dan kinetik bervariasi sehingga hal ini bukan merupakan kriteria pembentukan senyawa koordinasi.

REAKSI SENYAWA KOMPLEKS

       I.            Reaksi Substitusi
Reaksi substitusi adalah reaksi di mana 1 arau lebih ligan dalam suatu kompleks digantikan oleh ligan lain. Karena ligan memiliki pasangan elektron bebas sehingga bersifat nukleofilik (menyukai inti atom), maka reaksi tersebut juga dikenal sebagai reaksi substitusi nukeofilik (SN).

Berdasarkan mekanismenya reaksi substitusi dapat dibedakan menjadi :
1.    SN1 (lim)
2.    SN1
3.    SN2
4.    SN2 (lim)
5.    SN1 (lim) : substitusi nukleofilik orde-1 ekstrim

Mekanisme reaksi diawali dengan pemutusan salah satu ligan, ini berlangsung lambat sehingga merupakan tahap penentu reaksi (rate determining step). Dengan demikian konstanta laju reaksi (k) hanya dipengaruhi oleh jenis kompleks dan sama sekali tidak dipengaruhi oleh jenis ligan pengganti.

Contoh :
[Co(CN-)5(H2O)]2- +    Y- ↔    [Co(CN-)5(Y-)]2- +    H2O

Diperoleh data harga k untuk berbagai ligan pengganti (Y-) sebagai berikut :
ligan pengganti (Y-)
k (detik-1)
Br-
I-
SCN-
N3-
H2O-
1,6 . 10-3
1,6 . 10-3
1,6 . 10-3
1,6 . 10-3
1,6 . 10-3
Mekanisme reaksi :

[Co(CN-)5(H2O)]2- ↔    [Co(CN-)5]2- +       H2O                (lambat)
[Co(CN-)5]2- +    Y- ↔    [Co(CN-)5(Y-)]2-                        (cepat)

Persamaan laju reaksi :  r = k ([Co(CN-)5(H2O)]2


1.      SN1 : substitusi nukleofilik orde-1
Pada tahap penentu laju reaksi terjadi pemutusan maupun pembentukan ikatan. Pada saat ikatan antara ion pusat dengan ligan terganti sudah hampir putus sudah terjadi pembentukan ikatan (walaupun sangat lemah) antara ion pusat dengan ligan pengganti. Dengan demikian tahap penentu utama laju reaksi adalah pemutusan ikatan antara ion pusat dengan ligan terganti dan hanya sedikit dipengaruhi oleh pembentukan ikatan antara ion pusat dengan ligan pengganti. Harga k terutama ditentukan oleh jenis ion kompleks, namun jika jenis ligan pengganti divariasi ternyata memberikan sedikit pengaruh seperti tersaji pada tabel berikut :

ligan pengganti (Y-)
k
[Ni(H2O)6]2+
[Co(H2O)6]2+
SO42-
Glisin
Diglisin
imidazol
1,5
0,9
1,2
1,6
2
2,6
2,6
4,4


1.      SN2 : substitusi nukleofilik orde-2

Pada tahap penentu laju reaksi terjadi pemutusan maupun pembentukan ikatan. Pada saat ikatan antara ion pusat dengan ligan terganti baru mulai melemah sudah terjadi pembentukan ikatan yang sudah hampir sempurna antara ion pusat dengan ligan pengganti. Dengan demikian tahap penentu utama laju reaksi adalah pembentukan ikatan antara ion pusat dengan ligan pengganti dan hanya sedikit dipengaruhi oleh pemutusan ikatan antara ion pusat dengan ligan terganti.

1.      SN2-lim : substitusi nukleofilik orde-2 ekstrim
Mekanisme reaksi diawali dengan pembentukan ikatan yang sempurna antara ion pusat dengan ligan pengganti, dilanjutkan dengan pemutusan ligan terganti. Dengan demikian zantara (intermediate) merupakan kompleks koordinasi 5. Konstanta laju reaksi (k) dipengaruhi baik oleh jenis kompleks maupun oleh jenis ligan pengganti.

Contoh :
[PtCl4]2- +       X- ↔          [PtCl3X-]2- +   Cl-

Mekanisme :
[PtCl4]2- +       X- ↔          [PtCl4X-]2- (lambat)
[PtCl4X-]2- ↔         [PtCl3X-]2- +     Cl- (cepat)

Persamaan laju reaksi :  r = k ([PtCl4]2-)2(X-)
Untuk reaksi SN2 (lim) tersebut dapat disusun urutan laju reaksi untuk bebagai ligan pengganti (Y-), dimana perbandingan laju reaksi bilamana digunakan ligan PR3 :  OR- =  107 :1.

Reaksi substitusi pada kompleks oktahedral pada umunya berlangsung melalui mekanisme  SN1 dan SN1-lim (mekanisme disosiatif), sedang substitusi pada kompleks bujursangkar  pada umunya berlangsung melalui mekanisme SN2 dan SN2-lim (asosiatif). Hal ini dapat dipahami mengingat kompleks koordinat 6 sudah cukup crowded dan tidak ada tempat lagi bagi ligan pengganti untuk bergabung sehingga dihasilkan kompleks koordinat 7. Adapun untuk kompleks bujursangkar masih tersedia ruangan yang cukup longgar bagi ligan pengganti untuk bergabung membentuk intermediate berupa kompleks koordinat 5.


    II.            Reaksi Redoks
Reaksi redoks (reduksi-oksidasi) adalah reaksi dimana terjadi perubahan btlangan oksidasi pada ion-ion pusatya. Berdasarkan mekanismenya dapat dibedakan menjadi 2, yaitu mekanisme bola dalam (inner sphere mechanism) dan mekanisme bola luar (outer sphere mechanism).

a. Mekanisme bola dalam (inner sphere mechanism)
Mekanisme bola dalam juga disebut mekanisme perpindahan ligan karena perpindahan elektron dalam reaksi ini juga disertai dengan perpindahan ligan. Selain itu juga dikenal sebagai mekanisme jembatan ligan karena kompleks teraktivasinya merupakan kompleks dimana ligan yang akan berpindah menjembatani dua ion pusat reaktan. Mekanisme ini terjadi antara dua kompleks di mana kompleks yang 1 innert dan yang lain labil.

Contoh :
[Co(NH3)5Cl]2+ +  [Cr(H2O)6]2+ + 5H3O+ ↔  [Co(H2O)6]2+ +   [CrCl(H2O)5]2+ + 5NH4+

Dalam reaksi tersebut tejadi perpindahan elektron dari Cr(II) ke Co(III)  disertai dengan perpindahan ligan Cl- dari Co(III)   ke Cr(II). Jika dalam reaksi digunakan [Co(NH3)5*Cl]2+ dan juga ditambahkan Cl- ke dalam larutan tenyata yang dihasilkan adalah [Cr*Cl(H2O)5]2+ dan bukan [CrCl(H2O)5]2+ , artinya Cl- yang terikat pada Cr adalah Cl- yang semula terikat oleh Co. Untuk menjelaskan hal itu, H.Taube mengusulkan bahwa kompleks teraktivasi merupakan kompleks dimana ligan yang akan berpindah menjembatani dua ion pusat reaktan, yaitu  [(NH3)5Co-Cl-Cr(H2O)5]4+. Jadi Cl berfungsi sebagai “kabel” untuk perpindahan elektron dari Cr(II) ke Co(III) sehingga masing-masing berubah menjadi Cr(III) ke Co(II). Setelah terjadi perpindahan elektron jari-jari Cr mengecil (karena muatan positif bertambah), sebaliknya Co membesar (karena muatan positif berkurang). Akibatnya daya tarik  Cr(III) terhadap ligan Cl- lebih besar dibanding daya tarik  Co(II) terhadap ligan Cl- dan setelah ikatan putus Cl- terikat oleh Cr(III).

Mekanisme :
[Co(NH3)5Cl]2+ +  [Cr(H2O)6]2+ ↔    [(NH3)5Co-Cl-Cr(H2O)5]4+ +    H2O
[(NH3)5Co-Cl- Cr(H2O)5]4+ ↔    [(NH3)5Co]2+ +     [Cl-Cr(H2O)5]2+
[(NH3)5Co]2+ +      5H3O+ +    H2O    ↔     [Co(H2O)6]2+ +    5NH4+
Fakta lain yang mendukung usulan Taube tersebut adalah bahwa jika digunakan ligan yang lebih konduktif  (lebih polar atau memiliki ikatan rangkap, ternyata reaksi berlangsung lebih cepat :
VI- >  VBr- >  VCl-
V-CH=CH-CH-COO- >  V-CH2-CH2-CH2-COO-

b. Mekanisme bola luar (outer sphere mechanism)
Dalam mekanisme ini hanya terjadi perpindahan electron dan tidak disertai dengan perpindahan ligan, sehingga juga dikenal sebagai mekanisme perpindahan electron. Mekanisme ini terjadi dalam reaksi antara 2 kompleks yang inert.

Contoh :
[*Fe(CN)6]4- +    [Fe(CN)6]3- →      [*Fe(CN)6]3- +     [Fe(CN)6]4-

Karena kedua kompleks bersifat innert, maka pelepasan berlangsung lambat. Adapun elektron, dapat berpindah dengan sangat cepat (jauh lebih cepat dari perpindahan ligan) ; oleh karena itu tidak mugkin terjadi kompleks teraktivasi jembatan ligan. Dalam hal ini akan ditinjau 2 kemungkinan mekanisme :

§  Kedua kompleks saling mendekat kemudian diikuti oleh perpindahan elektron dari Fe(III) ke *Fe(II). Jika hal ini terjadi maka akan tejadi kompleks *Fe(II) dengan ikatan logam-ligan yang perlalu pendek, dan kompleks Fe(III) dengan ikatan logam-ligan yang perlalu panjang. Kedua produk tersebut memiliki tingkat energi yang tinggi (tak stabil), sehinga diduga tidak tejadi.
§  Kedua kompleks terlebih dahulu membentuk ompleks yangh simetris. Ikatan logam-ligan pada *Fe(II) agak mengkerut sedang pada Fe(III) agak mulur. Hal ini juga memerlukan energi tetapi relatif sedikit. Setelah kedua kompleks bergeometri sama (keadaan teaktivasi elektron berrpindah dari Fe(III) ke *Fe(II) melalui ligan-ligan kedua kompleks yang saling berdekatan. Dugaan ini didukung oleh fakta bahwa jika perbedaan panjang ikatan logam-ligan dalam kedua kompleks semakin besar tenyata ternyata reaksi berlangsung semakin lambat



Pereaksi
K (pada suhu 25 oC)
[*Mn(CN)6]4- +    [Fe(CN)6]4-
[*Fe(CN)6]3- +    [Fe(CN)6]4-
[*Co(NH3)6]2+ +    [Co(NH3)6]3+
> 106 mol detik-1
≈ 105 mol detik-1
≈ 104 mol detik-1



 III.            Pengaruh Trans
Dalam reaksi substitusi pada kompleks platinum teramati bahwa laju reaksi sangat dipengaruhi oleh sifat gugus yang berada pada posisi trans dari ligan terganti. Ligan-ligan dapat diurutkan berdasarkan ”pengaruh trans”, yaitu kemampuan melabilkan ligan lain yang berada pada posisi trans untuk siap digantikan. Dalam daftar berikut ligan diurutkan mulai dari yang memiliki  ”pengaruh trans” paling kuat, : CO, CN-, C2H4 > PR3, H-, RO > CH3-, SC(NH2)2> C6H5, NO2-, I-, SCN- > Br- > Cl- > NH3, Py, RNH2, F- > OH- > H2O.


WARNA
WARNA KOMPLEMEN
Hijau kekuningan
Hijau
Biru kehijauan
Hijau kebiruan
Biru
Biru keunguan
Ungu kebiruan
Ungu kemerahan
Merah
Oranye
Kuning keoranyean
Kuning


Ion kompleks adalah senyawa ionik, di mana kation dari logam transisi berikatan dengan dua atau lebih anion atau molekul netral. Dalam ion kompleks, kation logam unsur transisi dinamakan atom pusat, dan anion atau molekul netral terikat pada atom pusat dinamakan ligan (Latin: ligare, artinya mengikat).
Menurut teori asam-basa Lewis, ion logam transisi menyediakan orbital d yang kosong sehingga berperan sebagai asam Lewis (akseptor pasangan elektron bebas) dan ion atau molekul netral yang memiliki pasangan elektron bebas untuk didonorkan berperan sebagai basa Lewis.
Contoh ion kompleks adalah [Fe(H2O)6]3+.

Atom Fe bermuatan 3+ dengan konfigurasi elektron [Ar] 3d5 4s0. Oleh karena atom Fe dapat mengikat enam molekul H2O (netral), atom Fe harus menyediakan enam buah orbital kosong. Hal ini dicapai melalui hibridisasi d2sp3. Proses hibridisasinya adalah sebagai berikut. 

Konfigurasi atom Fe :
Konfigurasi atom Fe

Konfigurasi dari ion Fe3+ :
Konfigurasi dari ion Fe3+
Oleh karena memerlukan enam orbital kosong, hibridisasi yang terjadi adalah d2sp3, yakni 2 orbital dari 3d, 1 orbital dari 4s, dan 3 orbital dari 4p. Keenam orbital d2sp3 selanjutnya dihuni oleh pasangan elektron bebas dari atom O dalam molekul H2O.

Molekul atau ion yang bertindak sebagai ligan, yang terikat pada atom pusat, sekurang-kurangnya harus memiliki satu pasang elektron valensi yang tidak digunakan, misalnya Cl, CN, H2O, dan NH3, seperti ditunjukkan pada struktur Lewis Gambar 1.
Ligan H2O dan NH3
Gambar 1. (a) Ligan H2O dan (b) NH3.
Pada pembentukan ion kompleks, ligan dikatakan mengkoordinasi logam sebagai atom pusat. Ikatan yang terbentuk antara atom pusat dan ligan adalah ikatan kovalen koordinasi. Penulisan rumus kimia untuk ikatan koordinasi dalam senyawa kompleks digunakan tanda kurung siku. Jadi, dalam rumus [Cu(NH3)4]SO4 terdiri atas kation [Cu(NH3)4]2+ dan anion SO42–, dengan kation merupakan ion kompleks. Senyawa yang terbentuk dari ion kompleks dinamakan senya a kompleks atau koordinasi.

Ion kompleks memiliki sifat berbeda dengan atom pusat atau ligan pembentuknya. Misalnya, pada ion kompleks Fe(SCN)2+, ion SCN tidak berwarna dan ion Fe3+ berwarna cokelat. Ketika kedua spesi itu bereaksi membentuk ion kompleks, [Fe(SCN)6]3– warnanya menjadi merah darah.

Pembentukan kompleks juga dapat mengubah sifat-sifat ion logam, seperti sifat reduksi atau sifat oksidasi. Contohnya, Ag+ dapat direduksi oleh air dengan potensial reduksi standar:

Ag+(aq) + e → Ag(s)         Eo = +0,799 V

Namun ion [Ag(CN)2] tidak dapat direduksi oleh air sebab ion Ag+ sudah dikoordinasi oleh ion CN menjadi stabil dalam bilangan oksidasi +1.

[Ag(CN)2](aq) + e → Ag(s)          Eo = –0,31 V

Pertanyaan:
      Perbedaan ion kompleks dengan senyawa ionik?

JAWAB :
 Senyawa kompleks
1.  Senyawa kompleks adalah senyawa yang tersusun dari suatu ion logam pusat dengan satu
atau lebih ligan yang menyumbangkan pasangan elektron bebasnya kepada ion logam
pusat. Donasi pasangan elektron ligan kepada ion logam pusat menghasilkan ikatan kovalen
koordinasi sehingga senyawa kompleks juga disebut senyawa koordinasi . Jadi semua
senyawa kompleks atau senyawa koordinasi adalah senyawa yang terjadi karena adanya
ikatan kovalen koordinasi antara logam transisi dengan satu atau lebih ligan .
Senyawa kompleks sangat berhubungan dengan asam dan basa lewis dimana asam lewis
adalah senyawa yang dapat bertindak sebagai penerima pasangan bebas sedangkan basa
lewis adalah senyawa yang bertindak sebagai penyumbang pasangan elektron .
Senyawa kompleks dapat diuraikan menjadi ion kompleks.

2. Ion Kompleks
Ion kompleks adalah senyawa ionik, di mana kation dari logam transisi berikatan dengan
dua atau lebih anion atau molekul netral. Dalam ion kompleks, kation logam unsur
transisi dinamakan atom pusat, dan anion atau molekul netral terikat pada atom pusat
dinamakan ligan (Latin: ligare, artinya mengikat).



Tidak ada komentar:

Posting Komentar